Best Practices for Designing Scalable REST APIs in Cloud Environments

Authors

  • Sachin Bhatt Independent Researcher, USA

DOI:

https://doi.org/10.36676/j.sust.sol.v1.i4.26

Keywords:

REST API,, Cloud Computing, Scalability, Microservices, API Gateway, Performance Optimization

Abstract

This research paper explores the best practices for developing scalable Representational State Transfer (REST) APIs in cloud environments. As the demand for robust and high-performance APIs continues to grow, developers face numerous challenges in designing and implementing scalable solutions. This study examines various aspects of API development, including architectural principles, cloud-native technologies, performance optimization techniques, and security considerations. By synthesizing current research and industry practices, this paper provides a comprehensive guide for practitioners and researchers in the field of API development for cloud environments.

References

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services: Concepts, architectures and applications. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-3-662-10876-5

Ardagna, D., Casale, G., Ciavotta, M., Pérez, J. F., & Wang, W. (2014). Quality-of-service in cloud computing: modeling techniques and their applications. Journal of Internet Services and Applications, 5(1), 1-17. DOI: https://doi.org/10.1186/s13174-014-0011-3

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58. DOI: https://doi.org/10.1145/1721654.1721672

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices architecture enables DevOps: Migration to a cloud-native architecture. IEEE Software, 33(3), 42-52. DOI: https://doi.org/10.1109/MS.2016.64

Barker, A., Varghese, B., Ward, J. S., & Sommerville, I. (2014). Academic cloud computing research: Five pitfalls and five opportunities. In 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14).

Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118393994

Bermbach, D., & Tai, S. (2014). Benchmarking eventual consistency: Lessons learned from long-term experimental studies. In 2014 IEEE International Conference on Cloud Engineering (pp. 47-56). IEEE. DOI: https://doi.org/10.1109/IC2E.2014.37

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014). The reactive manifesto.

Brogi, A., Neri, D., Soldani, J., & Zimmermann, O. (2018). Design principles, architectural smells and refactorings for microservices: a multivocal review. SICS Software-Intensive Cyber-Physical Systems, 33(3), 225-244.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616. DOI: https://doi.org/10.1016/j.future.2008.12.001

Chakraborty, S., & Narahari, Y. (2017). A distributed algorithm for resource allocation in cloud computing systems. IEEE Transactions on Services Computing, 12(2), 250-263.

Daya, S., Van Duy, N., Eati, K., Ferreira, C. M., Glozic, D., Gucer, V., ... & Narain, S. (2016). Microservices from theory to practice: Creating applications in IBM Bluemix using the microservices approach. IBM Redbooks.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina, L. (2017). Microservices: yesterday, today, and tomorrow. In Present and ulterior software engineering (pp. 195-216). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-67425-4_12

Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: concepts, technology & architecture. Pearson Education.

Familiar, B. (2015). Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions. Apress. DOI: https://doi.org/10.1007/978-1-4842-1275-2

Faniyi, F., & Bahsoon, R. (2016). A systematic review of service level management in the cloud. ACM Computing Surveys (CSUR), 48(3), 1-27. DOI: https://doi.org/10.1145/2843890

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine.

Fowler, M., & Lewis, J. (2014). Microservices: a definition of this new architectural term. martinfowler.com.

Fowler, S. J. (2016). Production-ready microservices: Building standardized systems across an engineering organization. O'Reilly Media, Inc.

Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services. Future Generation Computer Systems, 29(4), 1012-1023. DOI: https://doi.org/10.1016/j.future.2012.06.006

Gulati, A., Shanmuganathan, G., Holler, A., Waldspurger, C., Ji, M., & Zhu, X. (2012). VMware distributed resource management: Design, implementation, and lessons learned. VMware Technical Journal, 1(1), 45-64.

Humble, J., & Farley, D. (2010). Continuous delivery: Reliable software releases through build, test, and deployment automation. Pearson Education.

Iosup, A., Prodan, R., & Epema, D. (2014). IaaS cloud benchmarking: Approaches, challenges, and experience. In Cloud Computing for Data-Intensive Applications (pp. 83-104). Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4939-1905-5_4

Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The journey so far and challenges ahead. IEEE Software, 35(3), 24-35. DOI: https://doi.org/10.1109/MS.2018.2141039

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service composition: A systematic literature review. Expert Systems with Applications, 41(8), 3809-3824. DOI: https://doi.org/10.1016/j.eswa.2013.12.017

Khatri, S. K., & Somani, A. K. (2017). Performance analysis of REST-based web services. In 2017 International Conference on Infocom Technologies and Unmanned Systems (ICTUS) (pp. 5-9). IEEE.

Khatri, S. K., & Somani, A. K. (2017). Web API discovery and integration: A review. In 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 111-116). IEEE.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What's inside the Cloud? An architectural map of the Cloud landscape. In 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing (pp. 23-31). IEEE. DOI: https://doi.org/10.1109/CLOUD.2009.5071529

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST cloud computing reference architecture. NIST Special Publication, 500(2011), 292. DOI: https://doi.org/10.6028/NIST.SP.500-292

Masse, M. (2011). REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces. O'Reilly Media, Inc.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication, 800(145), 7. DOI: https://doi.org/10.6028/NIST.SP.800-145

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O'Reilly Media, Inc.

Pahl, C., & Lee, B. (2015). Containers and clusters for edge cloud architectures--a technology review. In 2015 3rd International Conference on Future Internet of Things and Cloud (pp. 379-386). IEEE. DOI: https://doi.org/10.1109/FiCloud.2015.35

Pautasso, C., Zimmermann, O., & Leymann, F. (2008). Restful web services vs. big'web services: making the right architectural decision. In Proceedings of the 17th international conference on World Wide Web (pp. 805-814). DOI: https://doi.org/10.1145/1367497.1367606

Roca, J. C., & Lehmann, J. (2017). Designing Evolvable Web APIs with ASP. NET. O'Reilly Media, Inc.

Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira Jr, F. A., Ledoux, T., Lejeune, J., ... & Sens, P. (2016). SLA guarantees for cloud services. Future Generation Computer Systems, 54, 233-246. DOI: https://doi.org/10.1016/j.future.2015.03.018

Sharma, Y., Javadi, B., Si, W., & Sun, D. (2016). Reliability and energy efficiency in cloud computing systems: Survey and taxonomy. Journal of Network and Computer Applications, 74, 66-85. DOI: https://doi.org/10.1016/j.jnca.2016.08.010

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. J. (2018). The pains and gains of microservices: A Systematic grey literature review. Journal of Systems and Software, 146, 215-232. DOI: https://doi.org/10.1016/j.jss.2018.09.082

Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural patterns for microservices: a systematic mapping study. In CLOSER (pp. 221-232). DOI: https://doi.org/10.5220/0006798302210232

Thönes, J. (2015). Microservices. IEEE software, 32(1), 116-116. DOI: https://doi.org/10.1109/MS.2015.11

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., & Edmonds, A. (2015). An architecture for self-managing microservices. In Proceedings of the 1st International Workshop on Automated Incident Management in Cloud (pp. 19-24). DOI: https://doi.org/10.1145/2747470.2747474

Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5), 27-32. DOI: https://doi.org/10.1145/2677046.2677052

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil, S. (2015). Evaluating the monolithic and the microservice architecture pattern to deploy web applications in the cloud. In 2015 10th Computing Colombian Conference (10CCC) (pp. 583-590). IEEE. DOI: https://doi.org/10.1109/ColumbianCC.2015.7333476

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., ... & Lang, M. (2016). Infrastructure cost comparison of running web applications in the cloud using AWS lambda and monolithic and microservice architectures. In 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 179-182). IEEE. DOI: https://doi.org/10.1109/CCGrid.2016.37

Zhao, L., & Iyer, L. (2019). Architecting cloud-native applications for cloud platforms. IEEE Cloud Computing, 6(5), 10-17.

Tripathi, A. (2020). AWS serverless messaging using SQS. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 7(11), 391-393. DOI: https://doi.org/10.26562/ijirae.2020.v0711.003

Tripathi, A. (2019). Serverless architecture patterns: Deep dive into event-driven, microservices, and serverless APIs. International Journal of Creative Research Thoughts (IJCRT), 7(3), 234-239. Retrieved from http://www.ijcrt.org

Tripathi, A. (2022). Serverless deployment methodologies: Smooth transitions and improved reliability. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 9(12), 510-514. DOI: https://doi.org/10.26562/ijirae.2022.v0912.10

Tripathi, A. (2022). Deep dive into Java tiered compilation: Performance optimization. International Journal of Creative Research Thoughts (IJCRT), 10(10), 479-483. Retrieved from https://www.ijcrt.org

Thakkar, D. (2021). Leveraging AI to transform talent acquisition. International Journal of Artificial Intelligence and Machine Learning, 3(3), 7. https://www.ijaiml.com/volume-3-issue-3-paper-1/

Thakkar, D. (2020, December). Reimagining curriculum delivery for personalized learning experiences. International Journal of Education, 2(2), 7. Retrieved from https://iaeme.com/Home/article_id/IJE_02_02_003

Kanchetti, D., Munirathnam, R., & Thakkar, D. (2019). Innovations in workers compensation: XML shredding for external data integration. Journal of Contemporary Scientific Research, 3(8). ISSN (Online) 2209-0142.

Thakkar, D., Kanchetti, D., & Munirathnam, R. (2022). The transformative power of personalized customer onboarding: Driving customer success through data-driven strategies. Journal for Research on Business and Social Science, 5(2). ISSN (Online) 2209-7880. Retrieved from https://www.jrbssonline.com

Aravind Reddy Nayani, Alok Gupta, Prassanna Selvaraj, Ravi Kumar Singh, & Harsh Vaidya. (2019). Search and Recommendation Procedure with the Help of Artificial Intelligence. International Journal for Research Publication and Seminar, 10(4), 148–166. https://doi.org/10.36676/jrps.v10.i4.1503 DOI: https://doi.org/10.36676/jrps.v10.i4.1503

Vaidya, H., Nayani, A. R., Gupta, A., Selvaraj, P., & Singh, R. K. (2020). Effectiveness and future trends of cloud computing platforms. Tuijin Jishu/Journal of Propulsion Technology, 41(3). Retrieved from https://www.journal-propulsiontech.com

Selvaraj, P. . (2022). Library Management System Integrating Servlets and Applets Using SQL Library Management System Integrating Servlets and Applets Using SQL database. International Journal on Recent and Innovation Trends in Computing and Communication, 10(4), 82–89. https://doi.org/10.17762/ijritcc.v10i4.11109 DOI: https://doi.org/10.17762/ijritcc.v10i4.11109

Gupta, A., Selvaraj, P., Singh, R. K., Vaidya, H., & Nayani, A. R. (2022). The Role of Managed ETL Platforms in Reducing Data Integration Time and Improving User Satisfaction. Journal for Research in Applied Sciences and Biotechnology, 1(1), 83–92. https://doi.org/10.55544/jrasb.1.1.12 DOI: https://doi.org/10.55544/jrasb.1.1.12

Alok Gupta. (2021). Reducing Bias in Predictive Models Serving Analytics Users: Novel Approaches and their Implications. International Journal on Recent and Innovation Trends in Computing and Communication, 9(11), 23–30. Retrieved from https://ijritcc.org/index.php/ijritcc/article/view/11108

Rinkesh Gajera , "Leveraging Procore for Improved Collaboration and Communication in Multi-Stakeholder Construction Projects", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 3, Issue 3, pp.47-51, May-June.2019

Voddi, V. K. R., & Konda, K. R. (2021). Spatial distribution and dynamics of retail stores in New York City. Webology, 18(6). Retrieved from https://www.webology.org/issue.php?volume=18&issue=60

Gudimetla, S. R. (2022). Ransomware prevention and mitigation strategies. Journal of Innovative Technologies, 5, 1-19.

Gudimetla, S. R., et al. (2015). Mastering Azure AD: Advanced techniques for enterprise identity management. Neuroquantology, 13(1), 158-163. https://doi.org/10.48047/nq.2015.13.1.792

Gudimetla, S. R., & et al. (2015). Beyond the barrier: Advanced strategies for firewall implementation and management. NeuroQuantology, 13(4), 558-565. https://doi.org/10.48047/nq.2015.13.4.876

Kavuri, S., & Narne, S. (2020). Implementing effective SLO monitoring in high-volume data processing systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(2), 558. http://ijsrcseit.com

Kavuri, S., & Narne, S. (2021). Improving performance of data extracts using window-based refresh strategies. International Journal of Scientific Research in Science, Engineering and Technology, 8(5), 359-377. https://doi.org/10.32628/IJSRSET

Narne, S. (2023). Predictive analytics in early disease detection: Applying deep learning to electronic health records. African Journal of Biological Sciences, 5(1), 70–101. https://doi.org/10.48047/AFJBS.5.1.2023.7

Swethasri Kavuri. (2024). Leveraging Data Pipelines for Operational Insights in Enterprise Software. International Journal of Intelligent Systems and Applications in Engineering, 12(10s), 661–682. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6981

Narne, S. (2024). The impact of telemedicine adoption on patient satisfaction in major hospital chains. Bulletin of Pure and Applied Sciences-Zoology, 43B(2s).

Narne, S. (2022). AI-driven drug discovery: Accelerating the development of novel therapeutics. International Journal on Recent and Innovation Trends in Computing and Communication, 10(9), 196. http://www.ijritcc.org DOI: https://doi.org/10.17762/ijritcc.v10i10.10964

Rinkesh Gajera. (2024). Comparative Analysis of Primavera P6 and Microsoft Project: Optimizing Schedule Management in Large-Scale Construction Projects. International Journal on Recent and Innovation Trends in Computing and Communication, 12(2), 961–972. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11164

Rinkesh Gajera , "Leveraging Procore for Improved Collaboration and Communication in Multi-Stakeholder Construction Projects", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 3, Issue 3, pp.47-51, May-June.2019 DOI: https://doi.org/10.32628/IJSRCE19338

Rinkesh Gajera , "Integrating Power Bi with Project Control Systems: Enhancing Real-Time Cost Tracking and Visualization in Construction", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 7, Issue 5, pp.154-160, September-October.2023 DOI: https://doi.org/10.32628/IJSRCE123761

URL : https://ijsrce.com/IJSRCE123761

Rinkesh Gajera, “The Impact of Smartpm’s Ai-Driven Analytics on Predicting and Mitigating Schedule Delays in Complex Infrastructure Projects”, Int J Sci Res Sci Eng Technol, vol. 11, no. 5, pp. 116–122, Sep. 2024, Accessed: Oct. 02, 2024. [Online]. Available: https://ijsrset.com/index.php/home/article/view/IJSRSET24115101 DOI: https://doi.org/10.32628/IJSRSET24115101

Rinkesh Gajera. (2024). IMPROVING RESOURCE ALLOCATION AND LEVELING IN CONSTRUCTION PROJECTS: A COMPARATIVE STUDY OF AUTOMATED TOOLS IN PRIMAVERA P6 AND MICROSOFT PROJECT. International Journal of Communication Networks and Information Security (IJCNIS), 14(3), 409–414. Retrieved from https://ijcnis.org/index.php/ijcnis/article/view/7255

Gajera, R. (2024). Enhancing risk management in construction projects: Integrating Monte Carlo simulation with Primavera risk analysis and PowerBI dashboards. Bulletin of Pure and Applied Sciences-Zoology, 43B(2s).

Gajera, R. (2024). The role of machine learning in enhancing cost estimation accuracy: A study using historical data from project control software. Letters in High Energy Physics, 2024, 495-500.

Rinkesh Gajera. (2024). The Impact of Cloud-Based Project Control Systems on Remote Team Collaboration and Project Performance in the Post-Covid Era. International Journal of Research and Review Techniques, 3(2), 57–69. Retrieved from https://ijrrt.com/index.php/ijrrt/article/view/204

Rinkesh Gajera, 2023. Developing a Hybrid Approach: Combining Traditional and Agile Project Management Methodologies in Construction Using Modern Software Tools, ESP Journal of Engineering & Technology Advancements 3(3): 78-83.

Paulraj, B. (2023). Enhancing Data Engineering Frameworks for Scalable Real-Time Marketing Solutions. Integrated Journal for Research in Arts and Humanities, 3(5), 309–315. https://doi.org/10.55544/ijrah.3.5.34 DOI: https://doi.org/10.55544/ijrah.3.5.34

Balachandar, P. (2020). Title of the article. International Journal of Scientific Research in Science, Engineering and Technology, 7(5), 401-410. https://doi.org/10.32628/IJSRSET23103132 DOI: https://doi.org/10.32628/IJSRSET23103132

Balachandar Paulraj. (2024). LEVERAGING MACHINE LEARNING FOR IMPROVED SPAM DETECTION IN ONLINE NETWORKS. Universal Research Reports, 11(4), 258–273. https://doi.org/10.36676/urr.v11.i4.1364 DOI: https://doi.org/10.36676/urr.v11.i4.1364

Paulraj, B. (2022). Building Resilient Data Ingestion Pipelines for Third-Party Vendor Data Integration. Journal for Research in Applied Sciences and Biotechnology, 1(1), 97–104. https://doi.org/10.55544/jrasb.1.1.14 DOI: https://doi.org/10.55544/jrasb.1.1.14

Paulraj, B. (2022). The Role of Data Engineering in Facilitating Ps5 Launch Success: A Case Study. International Journal on Recent and Innovation Trends in Computing and Communication, 10(11), 219–225. https://doi.org/10.17762/ijritcc.v10i11.11145 DOI: https://doi.org/10.17762/ijritcc.v10i11.11145

Paulraj, B. (2019). Automating resource management in big data environments to reduce operational costs. Tuijin Jishu/Journal of Propulsion Technology, 40(1). https://doi.org/10.52783/tjjpt.v40.i1.7905

Balachandar Paulraj. (2021). Implementing Feature and Metric Stores for Machine Learning Models in the Gaming Industry. European Economic Letters (EEL), 11(1). Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1924

Balachandar Paulraj. (2024). SCALABLE ETL PIPELINES FOR TELECOM BILLING SYSTEMS: A COMPARATIVE STUDY. Darpan International Research Analysis, 12(3), 555–573. https://doi.org/10.36676/dira.v12.i3.107 DOI: https://doi.org/10.36676/dira.v12.i3.107

Ankur Mehra, Sachin Bhatt, Ashwini Shivarudra, Swethasri Kavuri, Balachandar Paulraj. (2024). Leveraging Machine Learning and Data Engineering for Enhanced Decision-Making in Enterprise Solutions. International Journal of Communication Networks and Information Security (IJCNIS), 16(2), 135–150. Retrieved from https://www.ijcnis.org/index.php/ijcnis/article/view/6989

Bhatt, S., Shivarudra, A., Kavuri, S., Mehra, A., & Paulraj, B. (2024). Building scalable and secure data ecosystems for multi-cloud architectures. Letters in High Energy Physics, 2024(212).

Balachandar Paulraj. (2024). Innovative Strategies for Optimizing Operational Efficiency in Tech-Driven Organizations. International Journal of Intelligent Systems and Applications in Engineering, 12(20s), 962 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6879

Bhatt, S. (2020). Leveraging AWS tools for high availability and disaster recovery in SAP applications. International Journal of Scientific Research in Science, Engineering and Technology, 7(2), 482. https://doi.org/10.32628/IJSRSET2072122 DOI: https://doi.org/10.32628/IJSRSET2072122

Bhatt, S. (2023). A comprehensive guide to SAP data center migrations: Techniques and case studies. International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 346. https://doi.org/10.32628/IJSRSET2310630 DOI: https://doi.org/10.32628/IJSRSET2310630

Kavuri, S., & Narne, S. (2020). Implementing effective SLO monitoring in high-volume data processing systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5(6), 558. https://doi.org/10.32628/CSEIT206479 DOI: https://doi.org/10.32628/CSEIT206479

Kavuri, S., & Narne, S. (2023). Improving performance of data extracts using window-based refresh strategies. International Journal of Scientific Research in Science, Engineering and Technology, 10(6), 359. https://doi.org/10.32628/IJSRSET2310631 DOI: https://doi.org/10.32628/IJSRSET2310631

Kavuri, S. (2024). Automation in distributed shared memory testing for multi-processor systems. International Journal of Scientific Research in Science, Engineering and Technology, 12(4), 508. https://doi.org/10.32628/IJSRSET12411594 DOI: https://doi.org/10.32628/IJSRSET12411594

Swethasri Kavuri, “Integrating Kubernetes Autoscaling for Cost Efficiency in Cloud Services”, Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 5, pp. 480–502, Oct. 2024, doi: 10.32628/CSEIT241051038. DOI: https://doi.org/10.32628/CSEIT241051038

Swethasri Kavuri. (2024). Leveraging Data Pipelines for Operational Insights in Enterprise Software. International Journal of Intelligent Systems and Applications in Engineering, 12(10s), 661–682. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6981

Swethasri Kavuri, " Advanced Debugging Techniques for Multi-Processor Communication in 5G Systems, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 9, Issue 5, pp.360-384, September-October-2023. Available at doi : https://doi.org/10.32628/CSEIT239071 DOI: https://doi.org/10.32628/CSEIT239071

Mehra, A. (2023). Strategies for scaling EdTech startups in emerging markets. International Journal of Communication Networks and Information Security, 15(1), 259–274. https://ijcnis.org

Mehra, A. (2021). The impact of public-private partnerships on global educational platforms. Journal of Informatics Education and Research, 1(3), 9–28. http://jier.org

Ankur Mehra. (2019). Driving Growth in the Creator Economy through Strategic Content Partnerships. International Journal for Research Publication and Seminar, 10(2), 118–135. https://doi.org/10.36676/jrps.v10.i2.1519 DOI: https://doi.org/10.36676/jrps.v10.i2.1519

Mehra, A. (2023). Leveraging Data-Driven Insights to Enhance Market Share in the Media Industry. Journal for Research in Applied Sciences and Biotechnology, 2(3), 291–304. https://doi.org/10.55544/jrasb.2.3.37

Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363

Mehra, A. (2023). Innovation in brand collaborations for digital media platforms. IJFANS International Journal of Food and Nutritional Sciences, 12(6), 231. https://doi.org/10.XXXX/xxxxx

Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363

Mehra, A. (2023). Leveraging Data-Driven Insights to Enhance Market Share in the Media Industry. Journal for Research in Applied Sciences and Biotechnology, 2(3), 291–304. https://doi.org/10.55544/jrasb.2.3.37 DOI: https://doi.org/10.55544/jrasb.2.3.37

Ankur Mehra. (2022). Effective Team Management Strategies in Global Organizations. Universal Research Reports, 9(4), 409–425. https://doi.org/10.36676/urr.v9.i4.1363 DOI: https://doi.org/10.36676/urr.v9.i4.1363

Ankur Mehra. (2022). The Role of Strategic Alliances in the Growth of the Creator Economy. European Economic Letters (EEL), 12(1). Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1925

Downloads

Published

20-10-2024

How to Cite

Sachin Bhatt. (2024). Best Practices for Designing Scalable REST APIs in Cloud Environments. Journal of Sustainable Solutions, 1(4), 48–71. https://doi.org/10.36676/j.sust.sol.v1.i4.26

Issue

Section

Original Research Articles